Today, we’re going to review the last two questions from the Tricky Data Sufficiency Questions practice post. If you’re just tuning in, give the questions a shot, check your answers here, and then review the explanations to questions #1-2, #3-4, and #5-6. Ready? Let’s move along. Question #7 7. If p + q = 2r […]

# Author Archive | Michael Schwartz

## Tricky Data Sufficiency Questions: Explanations #5 and #6

Today, we present the explanations for questions #5-6 from our Tricky Data Sufficiency Questions challenge. Be sure to check out the explanations for questions #1-2, and questions #3-4 before moving on to today’s post. Let’s get started. Question #5 5. What is the value of m+n? (1) mn = -8 (2) -2m = n […]

## Tricky Data Sufficiency Questions: Explanations #3 and #4

Today, we present the explanations to questions #3-4 from our Tricky Data Sufficiency Questions challenge post. You can find the explanations to questions #1-2 here. Let’s get started. Question #3 3. If 2x = 2y – 3z, what is the value of z? (1) y = x + 2 (2) x = y – […]

## Tricky Data Sufficiency Questions: Explanations #1 and #2

Today, we present the explanations for the first two questions in our Tricky Data Sufficiency Questions post. Let’s get started. Question #1 1. What is the value of x? (1) 5 x + 3 y = 15 (2) y = 5 – (5/3) x (A) Statement (1) ALONE is sufficient, but statement (2) alone […]

## Tricky Data Sufficiency Questions: Answer Key

On Monday, we presented a series of tricky data sufficiency questions, to test whether or not you’re able to steer clear of all the traps. Today, we present the answers to those questions, so that you can check your work. Over the next week or so, we will publish posts with in-depth explanations of how […]

## Tricky Data Sufficiency Questions

My most recent blog posts have concerned tricky Data Sufficiency questions about systems of equations. Specifically, they’ve been about what can go wrong when you misremember a rule and assume that it’s possible to solve for two variables if and only if you’re given two equations, and generally that it’s possible to solve for n […]

## GMAT Tricks with Systems of Equations: Part 5

A lot of GMAT test-takers vaguely remember a rule from high school, that it’s possible to solve for two variables if and only if you’re given two equations, and generally that it’s possible to solve for n variables if and only if you’re given n equations. Unfortunately, that rule isn’t quite correct as written, and […]

## GMAT Tricks with Systems of Equations: Part 4

A lot of GMAT test-takers vaguely remember a rule from high school, that it’s possible to solve for two variables if and only if you’re given two equations, and generally that it’s possible to solve for n variables if and only if you’re given n equations. Unfortunately, that rule isn’t quite correct as written, and […]

## GMAT Tricks with Systems of Equations: Part 3

A lot of GMAT test-takers vaguely remember a rule from high school, that it’s possible to solve for two variables if and only if you’re given two equations, and generally that it’s possible to solve for n variables if and only if you’re given n equations. Unfortunately, that rule isn’t quite correct as written, and […]

## GMAT Tricks with Systems of Equations: Part 2

A lot of GMAT test-takers vaguely remember a rule from high school, that it’s possible to solve for two variables if and only if you’re given two equations, and generally that it’s possible to solve for n variables if and only if you’re given n equations. Applying this rule incorrectly causes quite a few errors […]